(1)前面谈到,古代“熟铁”的含碳量是与可锻铁相当的。因灌钢以“熟铁”为原料,灌炼之后,其含碳量便有可能增加,也有可能减少,或者变化不大的。
(2)1938年周志宏先生对重庆北碚金刚碑苏钢作坊的原料和产品都进行了成分分析,结果列如表2—6。
可见其产品含碳量与原料“熟铁”含碳量是一样的。它们之间的主要区别是:成品钢中的硅、锰、磷、硫含量稍较原料“熟铁”为低。这显然是排除了夹杂之故。在其他地方的冶炼实例中,其苏钢产品含碳量也可能存在高于或低于原料“熟铁”含碳量的现象,但这不是灌炼的主要目的。
灌钢是我国古代冶金技术的一项杰出创造,它利用生铁含碳量较高、“熟铁”含氧化夹杂较多的特点,用“熟铁”中的氧来氧化生铁中的硅、锰、碳,造成激烈的“沸腾”,而达到去除夹杂的目的。虽操作简单,效果却十分明显,这是人类古代制钢工艺中所获得的最高成就。唐顺之《武编前编》卷五说:“此钢合二铁,两经铸炼之手,复合为一,少沙土粪滓,故凡工炼之为易也。”陈春华说“于时渣滓尽去”,都是毫无夸张的评价。约翰ap;#8226;德(jy)在《史前钢铁使用》一书中誉灌钢为“后世平炉方法的先声”,也并不过分。转引自李恒德《中国历史上的钢铁冶金技术》,《自然科学》第1卷第7期,1951年12月。
五、坩埚钢
钢我国古代坩埚钢的资料目前仅见一例,何堂坤等:《洛阳坩埚附着钢的初步研究》,《自然科学史研究》1985年第1期。但却是十分确凿的。我国汉代曾冶炼过坩埚钢无疑。
1979年,洛阳市文物工作队在黄河北岸的吉利工区发掘了一批汉墓,其中一座出土了11个坩埚。坩埚皆直筒形,口沿稍稍外卷,底圆,外径一般为14-15厘米,外高35-36厘米,壁厚2厘米。内外壁均有烧流,外表粘有煤块、熔渣等物,内表面较为平滑,有的地方粘有一层薄薄的铁渣。其中一个坩埚内壁的中段粘附一钢块,钢块整体作戟形,表面黄褐色,长10厘米、宽15厘米、厚0.4厘米。伴出物有五铢钱五枚,分别与《满城汉墓发掘报告》的2、3型(西汉中期)相当。经坩埚热释光断代试验,距今为1832-147年。故墓葬年代大体定为西汉中晚期至东汉中期。
经化学分析,钢块含碳量为1.21,属过共析高碳钢。扫描电镜(能谱)成分分析结果为:铁98.637、磷0.277、硫0.584、硅0.117、铝0.383。可见其含磷、硫较高。从金相分析看,金属基体为珠光体,晶粒间界上分布着许多网状渗碳体,磷共晶和氧化物。碳分布较为均匀,基本上是等轴晶,未见明显的柱状晶,磷共晶以不规则的星形分布于晶粒间界上。经扫描电镜分析,共晶区含磷9-12。不管金属晶粒还是非金属夹杂,均无拉伸和破碎现象,说明钢块冷凝后并未进行过任何压力加工。
经分析,坩埚成分为337.28、fe2o33.46、k2o0.63、na2o0.26、c13.66,可见其三氧化铝量和碳量都较高,这显然是有意选择配制的。优点是耐火度较高、热稳定性较好。经测定,坩埚耐火度为1580-1610c。依fe-c平衡图,并考虑到其他夹杂元素的影响,坩埚附着钢完全熔化的温度约低于1470c,故坩埚耐火度是能够满足冶炼要求的。这也体现了我国古代耐火材料技术的高超。
关于坩埚附着钢的冶炼工艺,目前尚无更多的资料可寻,我们推测很可能是一种直接冶炼,即以铁矿石为原料,以木炭、煤炭作还原剂和渗碳剂,在坩埚中直接还原渗碳。一般而言,这样冶炼得到的产品应当是生铁,但控制得当,也可以得到钢。据说古印度的坩埚钢便是这样直接冶炼得到的。但古印度坩埚钢多未达到液态,而是一种胶融状的半液态,其出炉产品往往是一种组织和成分极不均匀的固体块。洛阳坩埚钢却是充分熔化了的。在西方,液态坩埚钢在1740年才出现,我国在汉代就炼出了液态坩埚钢,实在难能可贵。
大汉帝国和中国古代冶钢技术在线阅读